Higher-Performance R via C++

Part 1: Introduction

Dirk Eddelbuettel

UZH/ETH Zurich R Courses
June 24-25, 2015

0/58

Overview

What Are We Doing Today and Tomorrow?

High-level motivation: Three main questions

- Why ? Several reasons discussed next
- How ? Rcpp details, usage, tips, ..

- What ? We will cover examples.

2/58

Focus on R and C++

- R: Our starting point
- C++: Our extension approach
- why, how, tricks, ..

3/58

Before the Why/How/What

Maybe some mutual introductions?

- Your background (academic, industry, ..)
- R experience (beginner, intermediate, advanced, ...
- Created / modified any R packages ?

- C and/or C++ experience ?

- Main interest in Rcpp: speed, extensions, .., ?

- Following rcpp-devel or r-devel 7

4/58

Overview: Why R?

Why R? : Programming with Data

@ll\l/][pttl]['dtiOl’lal The S Language

et OdS John M. Chambers
'H D:

Richard A. Becker
John M. Chambers
Allan R. Wilks

Chambers, Becker, Chambers, Chambers and Chambers. Chambers.
Computational and Wilks. The Hastie. Statistical Programming with Software for Data
Methods for Data New S Language. Models in S. Data. Springer, Analysis:

Analysis. Wiley, ~ Chapman & Hall, Chapman & Hall, 1998. Programming with
1977. 1988. 1992. R. Springer, 2008

Thanks to John Chambers for sending me high-resolution scans of the covers of his books.

6/58

A Simple Example

xx <- faithfull[,"eruptions"]
fit <- density(xx)
plot(fit)

7/58

A Simple Example

B
IS

density.default(x = xx)

0.4

Density

0.2
1

0.1

0.0
|

N =272 Bandwidth = 0.3348

8/58

A Simple Example - Refined

xx <- faithfull[,"eruptions"]
fitl <- density(xx)
fit2 <- replicate(10000, {
x <- sample(xx,replace=TRUE);
density(x, from=min(fit1$x), to=max(fit1$x))S$y
b
fit3 <- apply(fit2, 1, quantile,c(0.025,0.975))
plot(fitl, ylim=range(£fit3))
polygon(c(fiti1$x,rev(fit1$x)), c(£fit3[1,],rev(£fit3[2,]1)),
col='grey', border=F)
lines(fitl)

9/58

A Simple Example - Refined

density.default(x = xx)

T T T T T T
1 2 3 4 5 6

N =272 Bandwidth = 0.3348

10/58

So Why R?

R enables us to

- work interactively
- explore and visualize data
- access, retrieve and/or generate data

- summarize and report into pdf, html, ..

making it the key language for statistical computing, and a
preferred environment for many data analysts.

11/58

So Why R?

R has always been extensible via

- C via a bare-bones interface described in Writing R
Extensions

- Fortran which is also used internally by R
- Java via rJava by Simon Urbanek
- C4++4 but essentially at the bare-bones level of C

So while in theory this always worked — it was tedious in
practice

12/58

Why Extend R?

Chambers (2008), opens Chapter 11 Interfaces I: Using C and
Fortran:

Since the core of R is in fact a program written in the C
language, it's not surprising that the most direct interface
to non-R software is for code written in C, or directly
callable from C. All the same, including additional C code
is a serious step, with some added dangers and often a
substantial amount of programming and debugging
required. You should have a good reason.

13/58

Why Extend R?

Chambers (2008), opens Chapter 11 Interfaces I: Using C and
Fortran:

Since the core of R is in fact a program written in the C
language, it's not surprising that the most direct interface
to non-R software is for code written in C, or directly
callable from C. All the same, including additional C code
is a serious step, with some added dangers and often a
substantial amount of programming and debugging
required. You should have a good reason.

14/58

Why Extend R?

Chambers proceeds with this rough map of the road ahead:

- Against:

- It's more work
- Bugs will bite
- Potential platform dependency

- Less readable software

- In Favor:

- New and trusted computations
- Speed

- Object references

15/58

Why Extend R?

The Why? boils down to:

- speed Often a good enough reason for us .. and a focus for
us in this workshop.

- new things We can bind to libraries and tools that would
otherwise be unavailable in R

- references Chambers quote from 2008 foreshadowed the
work on the new Reference Classes now in R and built upon
via Rcpp Modules, Repp Classes (and also RcppR6)

16/58

Overview: Why C++?

Why C++?

- Asking Google leads to about 52 million hits.

- Wikipedia: C++ is a statically typed, free-form,
multi-paradigm, compiled, general-purpose, powerful
programming language

- C++ is industrial-strength, vendor-independent, widely-used,
and still evolving

- In science & research, one of the most frequently-used
languages: If there is something you want to use / connect
to, it probably has a C/C++ API

- As a widely used language it also has good tool support
(debuggers, profilers, code analysis)

18/58

http://en.wikipedia.org/wiki/C%2B%2B\protect \char "007D\relax \protect \char "007B\relax Wikipedia

Why C++?

Scott Meyers: View C++ as a federation of languages

- C provides a rich inheritance and interoperability as Unix,
Windows, ... are all build on C.

- Object-Oriented C++ (maybe just to provide endless
discussions about exactly what OO is or should be)

- Templated C++ which is mighty powerful; template meta
programming unequalled in other languages.

- The Standard Template Library (STL) is a specific template
library which is powerful but has its own conventions.

- C++11 (and C++14 and beyond) add enough to be called
a fifth language.

NB: Meyers original list of four languages appeared years before C++11.
19/58

Why C++?

- Mature yet current
- Strong performance focus:
- You don't pay for what you don’t use

- Leave no room for another language between the machine
level and C++

- Yet also powerfully abstract and high-level
- C4++11 is a big deal giving us new language features
- While there are complexities, Rcpp users are mostly shielded

20/58

Overview: Vision

Bell Labs, May 1976

Algocithm T wte cfoce 5/5/76
Asc . %ev.-.,-ql
(FORTRANY
a\&..:%\.“

KARS » FoRTRAN
subreutine to
pravide intecface
betwean ARC &

XA BDC

banguaqe andor

wH iy Rroqrams
XABC (TNSTR , OUTSTRY

Pointers/Valves
A r&umeu‘(Nawmes o
Branh

22/58

Interface Vision

R offers us the best of both worlds:

- Compiled code with

- Access to proven libraries and algorithms in C/C++/Fortran

- Extremely high performance (in both serial and parallel modes)

- Interpreted code with

- An accessible high-level language made for Programming with
Data

- An interactive workflow for data analysis

- Support for rapid prototyping, research, and experimentation

23/58

Why Rcpp?

- Easy to learn as it really does not have to be that
complicated — we will see numerous few examples

- Easy to use as it avoids build and OS system complexities
thanks to the R infrastrucure

- Expressive as it allows for vectorised C++ using Rcpp Sugar

- Seamless access to all R objects: vector, matrix, list,
S3/S4/RefClass, Environment, Function, ..

- Speed gains for a variety of tasks Rcpp excels precisely
where R struggles: loops, function calls, ..

- Extensions greatly facilitates access to external libraries
using eg Rcpp modules

24/58

Overview: Speed

Speed Example 1 (due to Christian Robert)

Five different ways to compute 1/(1 + x):

f <- function(n, x=1) for(i in 1:n) x <- 1/(1+x)

g <- function(n, x=1) for(i in 1:n) x <- (1/(1+x))
h <- function(n, x=1) for(i in 1:n) x <- (1+x)~(-1)
j <= function(n, x=1) for(i in 1:n) x <- {1/{1+x}}
k <- function(n, x=1) for(i in 1:n) x <- 1/{1+x}
library(rbenchmark)

N <- 1eb

benchmark (£ (N,1) ,g(N,1) ,h(N,1),j(N,1),k(N,1),order="relati:

26/58

Speed Example 1 (due to Christian Robert)

test replications elapsed relative
5 k(N, 1) 100 6.435 1.000
1 £(N, 1) 100 6.609 1.027
2 g(N, 1) 100 7.757 1.205
4 jN, 1) 100 7.882 1.225
3 h(N, 1) 100 11.766 1.828

27/58

Speed Example 1 (due to Christian Robert)

Adding a C++ variant is easy:

cppFunction ("
double m(int n, double x) {
for (int i=0; i<n; i++)
x =1/ (1+x);
return X;

}II

(We will learn more about cppFunction() later).

28/58

Speed Example 1 (due to Christian Robert)

#i#
##
#i#
#it
#i#
#i#
##

test replications elapsed relative

6 m(N,
1 £(N,
5 k(N,
4 j(N,
2 g(N,
3 h(N,

1)
1)
1)
1)
1)
1)

100
100
100
100
100
100

0.170
6.854
7.811
9.183
9.489
11.725

1

.000
40.
45.
54.
55.
68.

318
947
018
818
971

29/58

Speed Example 2 (due to StackOverflow)

Consider a function defined as

when n<?2

n
f h that
(n) ~such tha { f(n—1)+f(n—2) when n>2

30/58

Speed Example 2 (due to StackOverflow)

R implementation and use:
f <- function(n) {

if (n < 2) return(n)
return(f(n-1) + £(n-2))

Using it on first 11 arguments
sapply(0:10, f)

[1] 0 1 1 2 3 5 8 13 21 34 55

31/58

Speed Example 2 (due to StackOverflow)

Timing:

library(rbenchmark)
benchmark (£ (10), £(15), £(20))[,1:4]

#it test replications elapsed relative
1 £(10) 100 0.030 1.000
2 £(15) 100 0.335 11.167
3 £(20) 100 3.517 117.233

32/58

Speed Example 2 (due to StackOverflow)

int g(int n) {
if (n < 2) return(n);

return(g(n-1) + g(n-2));

deployed as

Rcpp: :cppFunction("int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2)); ")

sapply(0:10, g)

[1] O 1 1 2 3 5 8 13 21 34 55

33/58

Speed Example 2 (due to StackOverflow)

Timing:

Rcpp: :cppFunction("int g(int n) {

if (n < 2) return(n);

return(g(n-1) + g(-2)); ")
library(rbenchmark)
benchmark (f (20), g(20), order="relative")[,1:4]

#it test replications elapsed relative
2 g(20) 100 0.011 1.000
1 £(20) 100 3.776 343.273

A nice gain of a few orders of magnitude.
34/58

Another Angle on Speed

Run-time performance is just one example.
Time to code is another metric.

We feel quite strongly that helps you code more succinctly,
leading to fewer bugs and faster development.

A good environment helps. RStudio integrates R and C++
development quite nicely (eg the compiler error message
parsing is very helpful) and also helps with package building.

35/58

What Next ?

Programming with C++

- C+4+-+ Basics
- Debugging

- Best Practices

and then on to Rcpp itself

37/58

C++ Basics

Compiled not Interpreted

Need to compile and link

#include <cstdio>
int main(void) {

printf("Hello, world!\n");

return O;

39/58

Compiled not Interpreted

Or streams output rather than printf

#include <iostream>
int main(void) {

std::cout << "Hello, world!" << std::endl;

return O;

40/58

Compiled not Interpreted

g++ —o will compile and link

We will now look at an examples with explicit linking.

41/58

Compiled not Interpreted

#include <cstdio>

#define MATHLIB STANDALONE
#include <Rmath.h>

int main(void) {

printf("N(0,1) 95th percentile %9.8f\n",
gnorm(0.95, 0.0, 1.0, 1, 0));

42/58

Compiled not Interpreted

We may need to supply:

- header location via -1,
- library location via -L,

- library via -11ibraryname

g++ -I/usr/include -c gnorm_rmath.cpp
g++ -0 gnorm_rmath gnorm_rmath.o -L/usr/lib -1Rmath

43/58

Statically Typed

- R is dynamically typed: x <- 3.14; x <- "foo" is valid.
- In C++, each variable must be declared before first use.

- Common types are int and long (possibly with unsigned),
float and double, bool, as well as char.

- No standard string type, though std: :string is close.

- All these variables types are scalars which is fundamentally
different from R where everything is a vector.

- class (and struct) allow creation of composite types;
classes add behaviour to data to form objects.

- Variables need to be declared, cannot change

44/58

C++ Basics: A Better C

C++ is a Better C

- control structures similar to what R offers: for, while, if,
switch

- functions are similar too but note the difference in
positional-only matching, also same function name but
different arguments allowed in C++

- pointers and memory management: very different, but lots
of issues people had with C can be avoided via STL (which
is something Rcpp promotes too)

- sometimes still useful to know what a pointer is ..

46/58

Object-Oriented

This is a second key feature of C++, and it does it differently
from S3 and S4.

struct Date {
unsigned int year;
unsigned int month;

unsigned int day

};

struct Person {
char firstname[20];
char lastname[20];
struct Date birthday;
unsigned long id;

}; 47/58

Object-Oriented

Object-orientation in the C++ sense matches data with code
operating on it:

class Date {
private:
unsigned int year
unsigned int month;
unsigned int date;
public:
void setDate(int y, int m, int d);
int getDay();
int getMonth();
int getYear();

48/58

Generic Programming and the STL

The STL promotes generic programming.
For example, the sequence container types vector, deque,

and list all support

- push_back() to insert at the end,

- pop_back() to remove from the front;

- begin() returning an iterator to the first element;

- end () returning an iterator to just after the last element;

- size () for the number of elements;

but only 1ist has push_front() and pop_front().
Other useful containers: set, multiset, map and multimap.

49/58

Generic Programming and the STL

Traversal of containers can be achieved via iterators which
require suitable member functions begin() and end():

std: :vector<double>::const_iterator si;
for (si=s.begin(); si != s.end(); si++)
std::cout << *si << std::endl;

50/58

Generic Programming and the STL

Another key STL part are algorithms:

double sum = accumulate(s.begin(), s.end(), 0);

Some other STL algorithms are

- find finds the first element equal to the supplied value
- count counts the number of matching elements

- transform applies a supplied function to each element
- for_each sweeps over all elements, does not alter

- inner_product inner product of two vectors

51/58

Template Programming

Template programming provides a ‘language within C4++":
code gets evaluated during compilation.

One of the simplest template examples is

template <typename T>
const T& min(const T& x, const T& y) {
return y < x 7y : X;

This can now be used to compute the minimum between two
int variables, or double, or in fact any admissible type
providing an operator<() for less-than comparison.

52/58

Template Programming

Another template example is a class squaring its argument:

template <typename T>
class square : public std::unary_function<T,T> {
public:

T operator() (T t) const {

return txt;
}s

which can be used along with STL algorithms:

transform(x.begin(), x.end(), square);

53/58

Further Reading

Books by Meyers are excellent
| also like the (free) C++ Annotations
C++ FAQ

Resources on StackOverflow such as

- general info and its links, eg
- booklist

54/58

http://www.icce.rug.nl/documents/cplusplus/
http://stackoverflow.com/tags/c%2b%2b/info
http://stackoverflow.com/questions/388242/the-definitive-c-book-guide-and-list

Debugging

Debugging

Some tips:

- Generally painful, old-school printf () still pervasive

- Debuggers go along with compilers: gdb for gcc and g++;
11db for the clang / llvm family

- Extra tools such as valgrind helpful for memory debugging
- “Sanitizer” (ASAN/UBSAN) in newer versions of g++ and

clang++

56,/58

Best Practices

Best Practices

Version control: highly recommended to become familiar with
git or svn

Editor: in the long-run, recommended to learn productivity
tricks for one editor: emacs, vi, eclipse, RStudio, ...

58/58

	Overview
	Why R?
	Why C++?
	Vision
	Speed

	What Next ?
	C++ Basics
	A Better C

	Debugging
	Best Practices

