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Overview



What Are We Doing Today and Tomorrow?

High-level motivation: Three main questions

- Why ? Several reasons discussed next
- How ? Rcpp details, usage, tips, ..

- What ? We will cover examples.
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Focus on R and C++

- R: Our starting point
- C++: Our extension approach
- why, how, tricks, ..
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Before the Why/How/What

Maybe some mutual introductions?

- Your background (academic, industry, ..)
- R experience (beginner, intermediate, advanced, ...
- Created / modified any R packages ?

- C and/or C++ experience ?

- Main interest in Rcpp: speed, extensions, .., ?

- Following rcpp-devel or r-devel 7
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Overview: Why R?



Why R? : Programming with Data
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Thanks to John Chambers for sending me high-resolution scans of the covers of his books.
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A Simple Example

xx <- faithfull[,"eruptions"]
fit <- density(xx)
plot(fit)
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A Simple Example
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A Simple Example - Refined

xx <- faithfull[,"eruptions"]
fitl <- density(xx)
fit2 <- replicate(10000, {
x <- sample(xx,replace=TRUE);
density(x, from=min(fit1$x), to=max(fit1$x))S$y
b
fit3 <- apply(fit2, 1, quantile,c(0.025,0.975))
plot(fitl, ylim=range(£fit3))
polygon(c(fiti1$x,rev(fit1$x)), c(£fit3[1,],rev(£fit3[2,]1)),
col='grey', border=F)
lines(fitl)
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A Simple Example - Refined
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So Why R?

R enables us to

- work interactively
- explore and visualize data
- access, retrieve and/or generate data

- summarize and report into pdf, html, ..

making it the key language for statistical computing, and a
preferred environment for many data analysts.
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So Why R?

R has always been extensible via

- C via a bare-bones interface described in Writing R
Extensions

- Fortran which is also used internally by R
- Java via rJava by Simon Urbanek
- C4++4 but essentially at the bare-bones level of C

So while in theory this always worked — it was tedious in
practice
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Why Extend R?

Chambers (2008), opens Chapter 11 Interfaces I: Using C and
Fortran:

Since the core of R is in fact a program written in the C
language, it's not surprising that the most direct interface
to non-R software is for code written in C, or directly
callable from C. All the same, including additional C code
is a serious step, with some added dangers and often a
substantial amount of programming and debugging
required. You should have a good reason.
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Why Extend R?

Chambers proceeds with this rough map of the road ahead:

- Against:

- It's more work
- Bugs will bite
- Potential platform dependency

- Less readable software

- In Favor:

- New and trusted computations
- Speed

- Object references
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Why Extend R?

The Why? boils down to:

- speed Often a good enough reason for us .. and a focus for
us in this workshop.

- new things We can bind to libraries and tools that would
otherwise be unavailable in R

- references Chambers quote from 2008 foreshadowed the
work on the new Reference Classes now in R and built upon
via Rcpp Modules, Repp Classes (and also RcppR6)
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Overview: Why C++?



Why C++?

- Asking Google leads to about 52 million hits.

- Wikipedia: C++ is a statically typed, free-form,
multi-paradigm, compiled, general-purpose, powerful
programming language

- C++ is industrial-strength, vendor-independent, widely-used,
and still evolving

- In science & research, one of the most frequently-used
languages: If there is something you want to use / connect
to, it probably has a C/C++ API

- As a widely used language it also has good tool support
(debuggers, profilers, code analysis)
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Why C++?

Scott Meyers: View C++ as a federation of languages

- C provides a rich inheritance and interoperability as Unix,
Windows, ... are all build on C.

- Object-Oriented C++ (maybe just to provide endless
discussions about exactly what OO is or should be)

- Templated C++ which is mighty powerful; template meta
programming unequalled in other languages.

- The Standard Template Library (STL) is a specific template
library which is powerful but has its own conventions.

- C++11 (and C++14 and beyond) add enough to be called
a fifth language.

NB: Meyers original list of four languages appeared years before C++11.
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Why C++?

- Mature yet current
- Strong performance focus:
- You don't pay for what you don’t use

- Leave no room for another language between the machine
level and C++

- Yet also powerfully abstract and high-level
- C4++11 is a big deal giving us new language features
- While there are complexities, Rcpp users are mostly shielded
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Overview: Vision
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Interface Vision

R offers us the best of both worlds:

- Compiled code with

- Access to proven libraries and algorithms in C/C++/Fortran

- Extremely high performance (in both serial and parallel modes)

- Interpreted code with

- An accessible high-level language made for Programming with
Data

- An interactive workflow for data analysis

- Support for rapid prototyping, research, and experimentation
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Why Rcpp?

- Easy to learn as it really does not have to be that
complicated — we will see numerous few examples

- Easy to use as it avoids build and OS system complexities
thanks to the R infrastrucure

- Expressive as it allows for vectorised C++ using Rcpp Sugar

- Seamless access to all R objects: vector, matrix, list,
S3/S4/RefClass, Environment, Function, ..

- Speed gains for a variety of tasks Rcpp excels precisely
where R struggles: loops, function calls, ..

- Extensions greatly facilitates access to external libraries
using eg Rcpp modules
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Overview: Speed




Speed Example 1 (due to Christian Robert)

Five different ways to compute 1/(1 + x):

f <- function(n, x=1) for(i in 1:n) x <- 1/(1+x)

g <- function(n, x=1) for(i in 1:n) x <- (1/(1+x))
h <- function(n, x=1) for(i in 1:n) x <- (1+x)~(-1)
j <= function(n, x=1) for(i in 1:n) x <- {1/{1+x}}
k <- function(n, x=1) for(i in 1:n) x <- 1/{1+x}
library(rbenchmark)

N <- 1eb

benchmark (£ (N,1) ,g(N,1) ,h(N,1),j(N,1),k(N,1),order="relati:
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Speed Example 1 (due to Christian Robert)

## test replications elapsed relative
## 5 k(N, 1) 100  6.435 1.000
## 1 £(N, 1) 100  6.609 1.027
## 2 g(N, 1) 100  7.757 1.205
## 4 jN, 1) 100 7.882 1.225
## 3 h(N, 1) 100 11.766 1.828
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Speed Example 1 (due to Christian Robert)

Adding a C++ variant is easy:

cppFunction ("
double m(int n, double x) {
for (int i=0; i<n; i++)
x =1/ (1+x);
return X;

}II

(We will learn more about cppFunction() later).
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Speed Example 1 (due to Christian Robert)

#i#
##
#i#
#it
#i#
#i#
##

test replications elapsed relative

6 m(N,
1 £(N,
5 k(N,
4 j(N,
2 g(N,
3 h(N,

1)
1)
1)
1)
1)
1)

100
100
100
100
100
100

0.170
6.854
7.811
9.183
9.489
11.725

1

.000
40.
45.
54.
55.
68.

318
947
018
818
971
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Speed Example 2 (due to StackOverflow)

Consider a function defined as

when n<?2

n
f h that
(n) ~such tha { f(n—1)+f(n—2) when n>2
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Speed Example 2 (due to StackOverflow)

R implementation and use:
f <- function(n) {

if (n < 2) return(n)
return(f(n-1) + £(n-2))

## Using it on first 11 arguments
sapply(0:10, f)

## [1] 0 1 1 2 3 5 8 13 21 34 55
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Speed Example 2 (due to StackOverflow)

Timing:

library(rbenchmark)
benchmark (£ (10), £(15), £(20))[,1:4]

#it test replications elapsed relative
## 1 £(10) 100 0.030 1.000
## 2 £(15) 100 0.335 11.167
## 3 £(20) 100 3.517 117.233
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Speed Example 2 (due to StackOverflow)

int g(int n) {
if (n < 2) return(n);

return(g(n-1) + g(n-2));

deployed as

Rcpp: :cppFunction("int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2)); ")

sapply(0:10, g)

## [1] O 1 1 2 3 5 8 13 21 34 55
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Speed Example 2 (due to StackOverflow)

Timing:

Rcpp: :cppFunction("int g(int n) {

if (n < 2) return(n);

return(g(n-1) + g(-2)); ")
library(rbenchmark)
benchmark (f (20), g(20), order="relative")[,1:4]

#it test replications elapsed relative
## 2 g(20) 100 0.011 1.000
## 1 £(20) 100 3.776 343.273

A nice gain of a few orders of magnitude.
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Another Angle on Speed

Run-time performance is just one example.
Time to code is another metric.

We feel quite strongly that helps you code more succinctly,
leading to fewer bugs and faster development.

A good environment helps. RStudio integrates R and C++
development quite nicely (eg the compiler error message
parsing is very helpful) and also helps with package building.
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What Next ?




Programming with C++

- C+4+-+ Basics
- Debugging

- Best Practices

and then on to Rcpp itself
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C++ Basics




Compiled not Interpreted

Need to compile and link

#include <cstdio>
int main(void) {

printf("Hello, world!\n");

return O;
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Compiled not Interpreted

Or streams output rather than printf

#include <iostream>
int main(void) {

std::cout << "Hello, world!" << std::endl;

return O;
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Compiled not Interpreted

g++ —o will compile and link

We will now look at an examples with explicit linking.
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Compiled not Interpreted

#include <cstdio>

#define MATHLIB STANDALONE
#include <Rmath.h>

int main(void) {

printf("N(0,1) 95th percentile %9.8f\n",
gnorm(0.95, 0.0, 1.0, 1, 0));
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Compiled not Interpreted

We may need to supply:

- header location via -1,
- library location via -L,

- library via -11ibraryname

g++ -I/usr/include -c gnorm_rmath.cpp
g++ -0 gnorm_rmath gnorm_rmath.o -L/usr/lib -1Rmath
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Statically Typed

- R is dynamically typed: x <- 3.14; x <- "foo" is valid.
- In C++, each variable must be declared before first use.

- Common types are int and long (possibly with unsigned),
float and double, bool, as well as char.

- No standard string type, though std: :string is close.

- All these variables types are scalars which is fundamentally
different from R where everything is a vector.

- class (and struct) allow creation of composite types;
classes add behaviour to data to form objects.

- Variables need to be declared, cannot change
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C++ Basics: A Better C




C++ is a Better C

- control structures similar to what R offers: for, while, if,
switch

- functions are similar too but note the difference in
positional-only matching, also same function name but
different arguments allowed in C++

- pointers and memory management: very different, but lots
of issues people had with C can be avoided via STL (which
is something Rcpp promotes too)

- sometimes still useful to know what a pointer is ..
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Object-Oriented

This is a second key feature of C++, and it does it differently
from S3 and S4.

struct Date {
unsigned int year;
unsigned int month;

unsigned int day

};

struct Person {
char firstname[20];
char lastname[20];
struct Date birthday;
unsigned long id;
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Object-Oriented

Object-orientation in the C++ sense matches data with code
operating on it:

class Date {
private:
unsigned int year
unsigned int month;
unsigned int date;
public:
void setDate(int y, int m, int d);
int getDay();
int getMonth();
int getYear();
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Generic Programming and the STL

The STL promotes generic programming.
For example, the sequence container types vector, deque,

and list all support

- push_back() to insert at the end,

- pop_back() to remove from the front;

- begin() returning an iterator to the first element;

- end () returning an iterator to just after the last element;

- size () for the number of elements;

but only 1ist has push_front() and pop_front().
Other useful containers: set, multiset, map and multimap.
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Generic Programming and the STL

Traversal of containers can be achieved via iterators which
require suitable member functions begin() and end():

std: :vector<double>::const_iterator si;
for (si=s.begin(); si != s.end(); si++)
std::cout << *si << std::endl;
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Generic Programming and the STL

Another key STL part are algorithms:

double sum = accumulate(s.begin(), s.end(), 0);

Some other STL algorithms are

- find finds the first element equal to the supplied value
- count counts the number of matching elements

- transform applies a supplied function to each element
- for_each sweeps over all elements, does not alter

- inner_product inner product of two vectors
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Template Programming

Template programming provides a ‘language within C4++":
code gets evaluated during compilation.

One of the simplest template examples is

template <typename T>
const T& min(const T& x, const T& y) {
return y < x 7y : X;

This can now be used to compute the minimum between two
int variables, or double, or in fact any admissible type
providing an operator<() for less-than comparison.
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Template Programming

Another template example is a class squaring its argument:

template <typename T>
class square : public std::unary_function<T,T> {
public:

T operator() (T t) const {

return txt;
}s

which can be used along with STL algorithms:

transform(x.begin(), x.end(), square);
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Further Reading

Books by Meyers are excellent
| also like the (free) C++ Annotations
C++ FAQ

Resources on StackOverflow such as

- general info and its links, eg
- booklist
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Debugging




Debugging

Some tips:

- Generally painful, old-school printf () still pervasive

- Debuggers go along with compilers: gdb for gcc and g++;
11db for the clang / llvm family

- Extra tools such as valgrind helpful for memory debugging
- “Sanitizer” (ASAN/UBSAN) in newer versions of g++ and

clang++
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Best Practices




Best Practices

Version control: highly recommended to become familiar with
git or svn

Editor: in the long-run, recommended to learn productivity
tricks for one editor: emacs, vi, eclipse, RStudio, ...
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