
Higher-Performance R via C++
Part 1: Introduction

Dirk Eddelbuettel
UZH/ETH Zürich R Courses
June 24-25, 2015

0/58

Overview

What Are We Doing Today and Tomorrow?

High-level motivation: Three main questions

· Why ? Several reasons discussed next
· How ? Rcpp details, usage, tips, …
· What ? We will cover examples.

2/58

Focus on R and C++

· R: Our starting point
· C++: Our extension approach
· why, how, tricks, …

3/58

Before the Why/How/What

Maybe some mutual introductions?

· Your background (academic, industry, …)
· R experience (beginner, intermediate, advanced, …)
· Created / modified any R packages ?
· C and/or C++ experience ?
· Main interest in Rcpp: speed, extensions, …, ?
· Following rcpp-devel or r-devel ?

4/58

Overview: Why R?

Why R? : Programming with Data

Chambers,
Computational
Methods for Data
Analysis. Wiley,
1977.

Becker, Chambers,
and Wilks. The
New S Language.
Chapman & Hall,
1988.

Chambers and
Hastie. Statistical
Models in S.
Chapman & Hall,
1992.

Chambers.
Programming with
Data. Springer,
1998.

Chambers.
Software for Data
Analysis:
Programming with
R. Springer, 2008

Thanks to John Chambers for sending me high-resolution scans of the covers of his books.

6/58

A Simple Example

xx <- faithful[,"eruptions"]
fit <- density(xx)
plot(fit)

7/58

A Simple Example

1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

density.default(x = xx)

N = 272 Bandwidth = 0.3348

D
en

si
ty

8/58

A Simple Example - Refined

xx <- faithful[,"eruptions"]
fit1 <- density(xx)
fit2 <- replicate(10000, {

x <- sample(xx,replace=TRUE);
density(x, from=min(fit1$x), to=max(fit1$x))$y

})
fit3 <- apply(fit2, 1, quantile,c(0.025,0.975))
plot(fit1, ylim=range(fit3))
polygon(c(fit1$x,rev(fit1$x)), c(fit3[1,],rev(fit3[2,])),

col='grey', border=F)
lines(fit1)

9/58

A Simple Example - Refined

1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

density.default(x = xx)

N = 272 Bandwidth = 0.3348

D
en

si
ty

10/58

So Why R?

R enables us to

· work interactively
· explore and visualize data
· access, retrieve and/or generate data
· summarize and report into pdf, html, …

making it the key language for statistical computing, and a
preferred environment for many data analysts.

11/58

So Why R?

R has always been extensible via

· C via a bare-bones interface described in Writing R
Extensions

· Fortran which is also used internally by R
· Java via rJava by Simon Urbanek
· C++ but essentially at the bare-bones level of C

So while in theory this always worked – it was tedious in
practice

12/58

Why Extend R?

Chambers (2008), opens Chapter 11 Interfaces I: Using C and
Fortran:

Since the core of R is in fact a program written in the C
language, it’s not surprising that the most direct interface
to non-R software is for code written in C, or directly
callable from C. All the same, including additional C code
is a serious step, with some added dangers and often a
substantial amount of programming and debugging
required. You should have a good reason.

13/58

Why Extend R?

Chambers (2008), opens Chapter 11 Interfaces I: Using C and
Fortran:

Since the core of R is in fact a program written in the C
language, it’s not surprising that the most direct interface
to non-R software is for code written in C, or directly
callable from C. All the same, including additional C code
is a serious step, with some added dangers and often a
substantial amount of programming and debugging
required. You should have a good reason.

14/58

Why Extend R?

Chambers proceeds with this rough map of the road ahead:

· Against:
· It’s more work
· Bugs will bite
· Potential platform dependency
· Less readable software

· In Favor:
· New and trusted computations
· Speed
· Object references

15/58

Why Extend R?

The Why? boils down to:

· speed Often a good enough reason for us … and a focus for
us in this workshop.

· new things We can bind to libraries and tools that would
otherwise be unavailable in R

· references Chambers quote from 2008 foreshadowed the
work on the new Reference Classes now in R and built upon
via Rcpp Modules, Rcpp Classes (and also RcppR6)

16/58

Overview: Why C++?

Why C++?

· Asking Google leads to about 52 million hits.
· Wikipedia: C++ is a statically typed, free-form,

multi-paradigm, compiled, general-purpose, powerful
programming language

· C++ is industrial-strength, vendor-independent, widely-used,
and still evolving

· In science & research, one of the most frequently-used
languages: If there is something you want to use / connect
to, it probably has a C/C++ API

· As a widely used language it also has good tool support
(debuggers, profilers, code analysis)

18/58

http://en.wikipedia.org/wiki/C%2B%2B\protect \char "007D\relax \protect \char "007B\relax Wikipedia

Why C++?

Scott Meyers: View C++ as a federation of languages

· C provides a rich inheritance and interoperability as Unix,
Windows, … are all build on C.

· Object-Oriented C++ (maybe just to provide endless
discussions about exactly what OO is or should be)

· Templated C++ which is mighty powerful; template meta
programming unequalled in other languages.

· The Standard Template Library (STL) is a specific template
library which is powerful but has its own conventions.

· C++11 (and C++14 and beyond) add enough to be called
a fifth language.

NB: Meyers original list of four languages appeared years before C++11.

19/58

Why C++?

· Mature yet current
· Strong performance focus:

· You don’t pay for what you don’t use
· Leave no room for another language between the machine

level and C++

· Yet also powerfully abstract and high-level
· C++11 is a big deal giving us new language features
· While there are complexities, Rcpp users are mostly shielded

20/58

Overview: Vision

Bell Labs, May 1976

22/58

Interface Vision

R offers us the best of both worlds:

· Compiled code with
· Access to proven libraries and algorithms in C/C++/Fortran
· Extremely high performance (in both serial and parallel modes)

· Interpreted code with
· An accessible high-level language made for Programming with

Data
· An interactive workflow for data analysis
· Support for rapid prototyping, research, and experimentation

23/58

Why Rcpp?

· Easy to learn as it really does not have to be that
complicated – we will see numerous few examples

· Easy to use as it avoids build and OS system complexities
thanks to the R infrastrucure

· Expressive as it allows for vectorised C++ using Rcpp Sugar
· Seamless access to all R objects: vector, matrix, list,

S3/S4/RefClass, Environment, Function, …
· Speed gains for a variety of tasks Rcpp excels precisely

where R struggles: loops, function calls, …
· Extensions greatly facilitates access to external libraries

using eg Rcpp modules

24/58

Overview: Speed

Speed Example 1 (due to Christian Robert)

Five different ways to compute 1/(1 + x):

f <- function(n, x=1) for(i in 1:n) x <- 1/(1+x)
g <- function(n, x=1) for(i in 1:n) x <- (1/(1+x))
h <- function(n, x=1) for(i in 1:n) x <- (1+x)^(-1)
j <- function(n, x=1) for(i in 1:n) x <- {1/{1+x}}
k <- function(n, x=1) for(i in 1:n) x <- 1/{1+x}
library(rbenchmark)
N <- 1e5
benchmark(f(N,1),g(N,1),h(N,1),j(N,1),k(N,1),order="relative")[,1:4]

26/58

Speed Example 1 (due to Christian Robert)

test replications elapsed relative
5 k(N, 1) 100 6.435 1.000
1 f(N, 1) 100 6.609 1.027
2 g(N, 1) 100 7.757 1.205
4 j(N, 1) 100 7.882 1.225
3 h(N, 1) 100 11.766 1.828

27/58

Speed Example 1 (due to Christian Robert)

Adding a C++ variant is easy:

cppFunction("
double m(int n, double x) {

for (int i=0; i<n; i++)
x = 1 / (1+x);

return x;
}"

)

(We will learn more about cppFunction() later).

28/58

Speed Example 1 (due to Christian Robert)

test replications elapsed relative
6 m(N, 1) 100 0.170 1.000
1 f(N, 1) 100 6.854 40.318
5 k(N, 1) 100 7.811 45.947
4 j(N, 1) 100 9.183 54.018
2 g(N, 1) 100 9.489 55.818
3 h(N, 1) 100 11.725 68.971

29/58

Speed Example 2 (due to StackOverflow)

Consider a function defined as

f(n) such that
 n when n < 2

f(n − 1) + f(n − 2) when n ≥ 2

30/58

Speed Example 2 (due to StackOverflow)

R implementation and use:

f <- function(n) {
if (n < 2) return(n)
return(f(n-1) + f(n-2))

}

Using it on first 11 arguments
sapply(0:10, f)

[1] 0 1 1 2 3 5 8 13 21 34 55

31/58

Speed Example 2 (due to StackOverflow)

Timing:

library(rbenchmark)
benchmark(f(10), f(15), f(20))[,1:4]

test replications elapsed relative
1 f(10) 100 0.030 1.000
2 f(15) 100 0.335 11.167
3 f(20) 100 3.517 117.233

32/58

Speed Example 2 (due to StackOverflow)

int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2));

}

deployed as

Rcpp::cppFunction("int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2)); }")

sapply(0:10, g)

[1] 0 1 1 2 3 5 8 13 21 34 55

33/58

Speed Example 2 (due to StackOverflow)

Timing:

Rcpp::cppFunction("int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2)); }")

library(rbenchmark)
benchmark(f(20), g(20), order="relative")[,1:4]

test replications elapsed relative
2 g(20) 100 0.011 1.000
1 f(20) 100 3.776 343.273

A nice gain of a few orders of magnitude.
34/58

Another Angle on Speed

Run-time performance is just one example.

Time to code is another metric.

We feel quite strongly that helps you code more succinctly,
leading to fewer bugs and faster development.

A good environment helps. RStudio integrates R and C++
development quite nicely (eg the compiler error message
parsing is very helpful) and also helps with package building.

35/58

What Next ?

Hands-on

Programming with C++

· C++ Basics
· Debugging
· Best Practices

and then on to Rcpp itself

37/58

C++ Basics

Compiled not Interpreted

Need to compile and link

#include <cstdio>

int main(void) {
printf("Hello, world!\n");
return 0;

}

39/58

Compiled not Interpreted

Or streams output rather than printf

#include <iostream>

int main(void) {
std::cout << "Hello, world!" << std::endl;
return 0;

}

40/58

Compiled not Interpreted

g++ -o will compile and link

We will now look at an examples with explicit linking.

41/58

Compiled not Interpreted

#include <cstdio>

#define MATHLIB_STANDALONE
#include <Rmath.h>

int main(void) {
printf("N(0,1) 95th percentile %9.8f\n",

qnorm(0.95, 0.0, 1.0, 1, 0));
}

42/58

Compiled not Interpreted

We may need to supply:

· header location via -I,
· library location via -L,
· library via -llibraryname

g++ -I/usr/include -c qnorm_rmath.cpp
g++ -o qnorm_rmath qnorm_rmath.o -L/usr/lib -lRmath

43/58

Statically Typed

· R is dynamically typed: x <- 3.14; x <- "foo" is valid.
· In C++, each variable must be declared before first use.
· Common types are int and long (possibly with unsigned),
float and double, bool, as well as char.

· No standard string type, though std::string is close.
· All these variables types are scalars which is fundamentally

different from R where everything is a vector.
· class (and struct) allow creation of composite types;

classes add behaviour to data to form objects.
· Variables need to be declared, cannot change

44/58

C++ Basics: A Better C

C++ is a Better C

· control structures similar to what R offers: for, while, if,
switch

· functions are similar too but note the difference in
positional-only matching, also same function name but
different arguments allowed in C++

· pointers and memory management: very different, but lots
of issues people had with C can be avoided via STL (which
is something Rcpp promotes too)

· sometimes still useful to know what a pointer is …

46/58

Object-Oriented

This is a second key feature of C++, and it does it differently
from S3 and S4.

struct Date {
unsigned int year;
unsigned int month;
unsigned int day

};

struct Person {
char firstname[20];
char lastname[20];
struct Date birthday;
unsigned long id;

}; 47/58

Object-Oriented

Object-orientation in the C++ sense matches data with code
operating on it:

class Date {
private:

unsigned int year
unsigned int month;
unsigned int date;

public:
void setDate(int y, int m, int d);
int getDay();
int getMonth();
int getYear();

}
48/58

Generic Programming and the STL

The STL promotes generic programming.

For example, the sequence container types vector, deque,
and list all support

· push_back() to insert at the end;
· pop_back() to remove from the front;
· begin() returning an iterator to the first element;
· end() returning an iterator to just after the last element;
· size() for the number of elements;

but only list has push_front() and pop_front().

Other useful containers: set, multiset, map and multimap.
49/58

Generic Programming and the STL

Traversal of containers can be achieved via iterators which
require suitable member functions begin() and end():

std::vector<double>::const_iterator si;
for (si=s.begin(); si != s.end(); si++)

std::cout << *si << std::endl;

50/58

Generic Programming and the STL

Another key STL part are algorithms:

double sum = accumulate(s.begin(), s.end(), 0);

Some other STL algorithms are

· find finds the first element equal to the supplied value
· count counts the number of matching elements
· transform applies a supplied function to each element
· for_each sweeps over all elements, does not alter
· inner_product inner product of two vectors

51/58

Template Programming

Template programming provides a ‘language within C++’:
code gets evaluated during compilation.

One of the simplest template examples is

template <typename T>
const T& min(const T& x, const T& y) {

return y < x ? y : x;
}

This can now be used to compute the minimum between two
int variables, or double, or in fact any admissible type
providing an operator<() for less-than comparison.

52/58

Template Programming

Another template example is a class squaring its argument:

template <typename T>
class square : public std::unary_function<T,T> {
public:

T operator()(T t) const {
return t*t;

}
};

which can be used along with STL algorithms:

transform(x.begin(), x.end(), square);

53/58

Further Reading

Books by Meyers are excellent

I also like the (free) C++ Annotations

C++ FAQ

Resources on StackOverflow such as

· general info and its links, eg
· booklist

54/58

http://www.icce.rug.nl/documents/cplusplus/
http://stackoverflow.com/tags/c%2b%2b/info
http://stackoverflow.com/questions/388242/the-definitive-c-book-guide-and-list

Debugging

Debugging

Some tips:

· Generally painful, old-school printf() still pervasive
· Debuggers go along with compilers: gdb for gcc and g++;
lldb for the clang / llvm family

· Extra tools such as valgrind helpful for memory debugging
· “Sanitizer” (ASAN/UBSAN) in newer versions of g++ and
clang++

56/58

Best Practices

Best Practices

Version control: highly recommended to become familiar with
git or svn

Editor: in the long-run, recommended to learn productivity
tricks for one editor: emacs, vi, eclipse, RStudio, …

58/58

	Overview
	Why R?
	Why C++?
	Vision
	Speed

	What Next ?
	C++ Basics
	A Better C

	Debugging
	Best Practices

